A culmination of the authors' years of extensive research on this topic, Relational Data Clustering: Models, Algorithms, and Applications addresses the fundamentals and applications of relational data clustering. It describes theoretic models and algorithms and, through examples, shows how to apply these models and algorithms to solve real-world problems.
After defining the field, the book introduces different types of model formulations for relational data clustering, presents various algorithms for the corresponding models, and demonstrates applications of the models and algorithms through extensive experimental results. The authors cover six topics of relational data clustering:
1. Clustering on bi-type heterogeneous relational data
2. Multi-type heterogeneous relational data
3. Homogeneous relational data clustering
4. Clustering on the most general case of relational data
5. Individual relational clustering framework
6. Recent research on evolutionary clustering
This book focuses on both practical algorithm derivation and theoretical framework construction for relational data clustering. It provides a complete, self-contained introduction to advances in the field.
After defining the field, the book introduces different types of model formulations for relational data clustering, presents various algorithms for the corresponding models, and demonstrates applications of the models and algorithms through extensive experimental results. The authors cover six topics of relational data clustering:
1. Clustering on bi-type heterogeneous relational data
2. Multi-type heterogeneous relational data
3. Homogeneous relational data clustering
4. Clustering on the most general case of relational data
5. Individual relational clustering framework
6. Recent research on evolutionary clustering
This book focuses on both practical algorithm derivation and theoretical framework construction for relational data clustering. It provides a complete, self-contained introduction to advances in the field.