Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych. Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego. W tej książce: - podstawowe rodzaje uczenia maszynowego i ich zastosowanie, - biblioteka scikit-learn i klasyfikatory uczenia maszynowego, - wydajne łączenie różnych algorytmów uczących, - analiza sentymentów – przewidywanie opinii osób na podstawie sposobu pisania, - praca z nieoznakowanymi danymi – uczenie nienadzorowane, - tworzenie i trenowanie sieci neuronowych. Uczenie maszynowe – odkryj wiedzę, którą niosą dane! Sebastian Raschka jest ekspertem w dziedzinie analizy danych i uczenia maszynowego. Obecnie przygotowuje doktorat na Michigan State University z metod obliczeniowych w biologii statystycznej. Biegle posługuje się Pythonem. Raschka bierze również udział w różnych projektach open source i wdraża nowe metody uczenia maszynowego. W wolnym czasie pracuje nad modelami predykcyjnymi dyscyplin sportowych. Jeżeli nie siedzi przed monitorem, chętnie uprawia sport.